જો $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$ $({x_i} \ne \,0\, $ બધા $\,i\, = 1,2,....,n)$ એ સમાંતર શ્રેણીમાં હોય કે જ્યાં $x_1 = 4$ અને $x_{21} = 20$ અને $x_n > 50$ જ્યાં $n$ એ ન્યૂનતમ ધન પૂર્ણાંક સંખ્યા છે તો $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $ ની કિમત મેળવો
$3$
$\frac {13}{8}$
$\frac {13}{4}$
$\frac {1}{8}$
જો $a_r > 0, r \in N$ અને $a_1$,$a_2$,$a_3$,..,$a_{2n}$ સમાંતર શ્રેણીમાં હોય,તો$\frac{{{a_1}\, + \,{a_{2n}}}}{{\sqrt {{a_1}} + \sqrt {{a_2}} }}\, + \,\frac{{{a_2}\, + \,{a_{2n - 1}}}}{{\sqrt {{a_2}} + \sqrt {{a_3}} }}\, + \,\frac{{{a_3}\, + \,{a_{2n - 2}}}}{{\sqrt {{a_3}} \, + \,\sqrt {{a_4}} }}\, + \,..\, + \,\frac{{{a_n}\, + \,{a_{n + 1}}}}{{\sqrt {{a_n}\,} \, + \,{a_{n + 1}}}}\, = \,.........$
વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો ચાર સંખ્યાઓનો સામાન્ય તફાવત કેટલો થાય ?
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{17}},{a_{24}}$ પદ શોધો : $a_{n}=4 n-3$
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$